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Abstract

Cable-in-Conduits are superconducting conductors that consist of a bundle of cabled strands enclosed in a leak-tight pipe, the jacket.
Helium flows inside the jacket, in a meandrous flow path defined by the intersticial space among the cabled strands, or in specific passages
introduced by design to reduce pressure drop. The main advantage of this design is to bring the coolant in close thermal contact with the
superconductor, thus enhancing the heat removal as well as its thermal stability. To date, however, the details of the flow and heat trans-
fer mechanism in this complex geometry are not well understood. We propose to use an analogy between the bundle of strands in the
cable and a porous media. The analogy provides simple correlations for pressure drop and heat transfer prediction that contain explicitly
permeability, drag factor and thermal dispersion. We use published pressure drop data to show that the range of permeability of a CICC
is within the expected values for a porous medium with the same equivalent particle diameter, while the drag factor is consistently lower
than what expected from the theory of particle beds, which will require further work to produce a satisfactory explanation. Experimental
data for the internal heat transfer obtained from a short ITER conductor sample are in good agreement with the expected contribution of
thermal dispersion, which supports or proposal.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Cable-in-Conduit conductors (in short CICCs) consist
of a bundle of superconducting strands cabled in various
configurations and size, depending on the desired current
carrying capacity, and enclosed in a leak-tight conduit (also
called the jacket). In most of the applications to date, CIC-
Cs are cooled by internal convection, by a flow of liquid or
supercritical helium. The helium flows among the strands,
in the interstices of the cable, along tortuous and irregular
paths. Various CICC configurations have been designed,
produced and tested since the concept was first proposed
more than 30 years ago by Hoenig et al. at MIT [1,2].
We show in Fig. 1 the original schematics of the CICC pro-
posals, as well as some of the late realisations for the CIC-
Cs of ITER [3] and Wendelstein-7X [4]. In some
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configurations (see the ITER example in Fig. 1), additional
channels have been added using pipes within the cable,
wraps and spacers, spirals in the center of the cable, or
co-laminated pipes to provide a low hydraulic impedance
flow path. The typical size of the strands ranges from 0.5
to 1 mm. The cables are formed by twisting or braiding
in multiple stages a number of strands ranging from 100
to 1000, depending on the required current carrying capac-
ity. The cable must be compacted to achieve a mechanically
stable configuration, still limiting the strand deformation.
As a result the feasible range of void fraction in the cable
(the ratio of void space to the total cable area) extends
from 0.25 to 0.45. The final diameter of the cable ranges
from about 10 mm for small cables (Fig. 1, bottom left),
to about 50 mm for large size cables used in ITER
(Fig. 1, bottom right).

The advantage, and indeed the main reason of the CICC
design, is that the thermal vector, the flowing helium, is in
intimate contact with the superconducting strands. Thanks
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Nomenclature

List of symbols

AS solid phase cross section
AF fluid phase cross section
cpF fluid specific heat at constant pressure
CF drag coefficient
Dh hydraulic diameter
Dstrand strand diameter
Dparticle particle diameter, equivalent diameter of a

spherical particle
fdead dead space in the porous matrix (sealed pores)
f friction factor
h heat transfer coefficient
k effective thermal conductivity
kF fluid molecular thermal conductivity
kL effective thermal conductivity in the direction of

the flow
kT effective thermal conductivity in the direction

transverse to the flow

K permeability
Nu Nusselt number
Nuu seepage Nusselt number
p fluid pressure
pw wetted perimeter
Peu seepage Peclet number
Pr Prandtl number
Re Reynolds number
Reu seepage Reynolds number
S surface per unit volume of the solid phase
T fluid temperature
v average fluid velocity in the pores
vu seepage velocity
aF fluid diffusivity
u porosity, identical to void fraction
l viscosity
qF fluid density
h average cabling angle
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to this, CICCs have the best possible local cooling condi-
tions and achieve the highest expected stability against
thermal perturbations [5]. The superior stability makes
the CICC concept attractive for applications such as ther-
monuclear fusion, where the electromagnetic and nuclear
environment cause relatively high DC and transient ther-
mal loading of the superconducting coil. Cooling and sta-
Fig. 1. The concept of a CICC (top, reproduced from [2]), and some recent re
(bottom left) and an ITER prototype [3] (bottom center and right).
bility have often been a design driver in the layout of a
CICC as well as magnets wound with it.

This leads us finally to one of the main difficulties in
CICC design, namely the precise knowledge of the
thermo-hydraulics of the flow and in particular pressure
drop and heat transfer characteristics. This problem is par-
ticularly relevant in the presence of parallel flow paths in
alisation of CICC’s for fusion magnets: the Wendelstein-7X conductor [4]
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the cable cross section, as is the case of the ITER CICC, in
which case the overall cooling efficiency depends on the
heat transfer between the helium in the cable interstices,
nearly stagnant, and the helium in the channel, flowing at
relatively high speed.

Research so far has focussed on adapting known corre-
lations for pipe flow, using hydraulic analogy and average
values of the flow cross section and hydraulic diameter.
The adapted correlations have been used to interpret mea-
surements of pressure drop and heat convection. The result
of this work is only marginally satisfactory for design pur-
poses, and the uncertainty in the values used for the heat
transfer is compensated by design safety factors. Indeed,
we feel that this approach has reached its limit for the
understanding of the physical phenomena involved.

It is for this reason that we propose to consider the cable
cross section of the CICCs shown in Fig. 1 as a porous
medium, for which we can use established theory and a
large amount of data in the literature. The cabled strands
form the packed solid phase that obstructs the free flow
in the channel. The pores are the interstices between
strands, and the coolant flows in the tortuous path con-
necting the interstices. In this paper we discuss the implica-
tions of this analogy, based on the known theory of mass,
momentum and energy convection in porous media (see for
example [6] and references therein).

Before we start our discussion, we recall that a similar
approach was already considered by others. Long [7] went
into extensive details to obtain friction factor and heat
transfer correlations that apply to ITER-like CICCs. The
resulting theory is noteworthy, but unfortunately it con-
tains a large number of unknown parameters that depend
on the microscopic and macroscopic characteristic of the
CICC. For this reason it is difficult to interpret, especially
to evidence parametric dependencies on the main design
quantities such as strand diameter, void fraction, or cool-
ing massflow. Within the scope of his research, Long
reviewed available pressure drop data and derived perme-
ability and drag coefficients that we will discuss later.
Renard [8] used the theory of porous media for the pressure
drop in the cable, but discarded its use in a range of Rey-
nolds number larger than 10, preferring the experimental
fit of Katheder [9]. His focus was on the flow in the central
cooling channel of ITER-like CICCs, and he did not pur-
sue the analogy. Wang et al. [10] developed a model for
the quench propagation in the HT-7U CICC coils that con-
siders the flow of helium as porous. They used given perme-
ability and drag coefficient values to predict the pressure
drop, but neglected the effect of thermal dispersion, that
we discuss later. Finally, Zanino and Savoldi Richard
[11] used the Darcy–Forcheimer form of the momentum
balance to derive permeability and drag coefficient data
from a series of CICCs tested over the past 10 years. They
concluded that although some regularity could be found,
both permeability and drag coefficient were strongly depen-
dent on the details of the cable geometry, and that proper
use of the analogy would require a priori determination of
both parameters, which was judged beyond present capa-
bility. In their work they further hinted that heat transfer
between strands and helium should be best predicted using
porous media correlations.

In this paper we will develop these ideas, maintaining
the discussion as simple as possible, and restricting to the
main results that can be derived from a theory of convec-
tion in porous media relevant to forced flow in CICCs.
We start with a brief introduction on transport phenomena
in porous media. Next, we consider pressure drop, and we
give estimates for permeability and drag coefficient appro-
priate to CICCs. We then review simple expressions for
thermal dispersion, that results in a great increase of effec-
tive fluid conductivity under strong convection. The results
are useful to explain enhanced heat transfer coefficients to
the solid phase in the fluid flow (i.e., the cable) and the pipe
wall delimiting the flow (i.e., the conduit). Finally, we con-
clude showing how the analogy can be used to interpret
data taken during a heat pulse propagation experiment in
a short length sample of a fusion CICC.

2. Definitions and conservation balances

In the most common configuration, the cable of a CICC
is wound using N strands with a single diameter Dstrand.
When the average cabling angle h is small, i.e., when cosh
is close to one, the wetted perimeter of the cable is

pw �
fdeadNpDstrand

cos h
ð1Þ

where the factor fdead corrects the geometric wetted perim-
eter for the dead space enclosed between deformed strands
[12]. The range of values for fdead spans from 0.6, for tightly
compacted cables, to 0.9 for loose cables.

The cross sections of the solid phase (strands) and of the
fluid (helium) are:

AS ¼
1

cos h
N

p
4

D2
strand ð2Þ

AF ¼
u

1� u
1

cos h
N

p
4

D2
strand ð3Þ

where u is the void fraction of the cable. For pressure drop
and heat transfer calculations we define an hydraulic diam-
eter, computed using the standard definition for pipes:

Dh ¼
4AF

pw

¼ u
1� u

Dstrand

fdead

ð4Þ

Conversely, a porous media is defined macroscopically by
its porosity, i.e., the fraction of the total volume occupied
by void and free to the flow. This corresponds to the void
fraction u of the superconducting cable in a CICC. The
complement to one, 1 � u, is the fraction of the solid phase
in the medium, i.e., the strand fraction. The second macro-
scopic characteristic is the geometry of the solid phase (e.g.
spheres, wires, and particles), which determines the flow
and heat transfer properties, as discussed below. A large
number of transport experiments in porous media are per-
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formed on beds of packed particles of more or less uni-
form, spherical geometry. The superconducting cable of
interest to us resembles rather a woven fiber or a bed of
packed wires. To be able to use the existing results on beds
of packed particles, we define an equivalent particle diame-

ter Dparticle that would result in the same solid surface per
unit volume S as the CICC geometry [13]. Dparticle is given
by:

Dparticle ¼
6

S
ð5Þ

Using the expressions for the wetted perimeter and cross
section of the cable given above (Eqs. (1) and (3)), we have
that:

S ¼ 4f dead

Dstrand

ð6Þ

and by consequence:

Dparticle ¼
3

2f dead

Dstrand ð7Þ

Different definitions of fluid velocity apply in porous med-
ia, corresponding to different length scales. At the first le-
vel, at a microscopic scale much larger than the
molecular length, we define the intrinsic velocity of the fluid
V, that can be different from point to point within a pore.
This is the velocity that describes the 3-D flow field within a
pore.

The equations of flow are written for the average fluid
velocity, v, which is obtained averaging the intrinsic veloc-
ity V over a representative elementary volume of fluid VF

that excludes the solid phase, and whose size is large
enough to produce a values independent on the volume
itself. In practice VF must be larger than the pore size,
but smaller than the length scale of the macroscopic flow
domain. This is the velocity commonly used to model flow
and heat exchange in the long cooling channels of a CICC
coil [5].

The balances of mass, momentum and energy require
finally dealing with averages over a volume V of size com-
parable to VF, but including both fluid and solid phases.
The result of this averaging process produces fluid quanti-
ties, including the seepage velocity vu, that are weighted by
the porosity u. The seepage velocity is related to the aver-
age fluid velocity v by:

vu ¼ uv ð8Þ

In the range of cooling conditions of interest here, the stea-
dy-state mass, momentum and energy conservation bal-
ances of the fluid in a porous medium are the following:

u
oqF

ot
þrðqvuÞ ¼ 0 ð9Þ

rp ¼ � l
K

vu � CF

qF

K1=2
jvujvu ð10Þ

uqFcpF

oT
ot
þ qFcpFvurT ¼ ur � ðkrT Þ þ u _q000F ð11Þ
whose derivation and discussion can be found in [6]. In the
equations above CF is a dimensionless drag coefficient, K

the permeability (assumed to be isotropic), cpF the fluid
specific heat at constant pressure, k is an effective heat con-
ductivity, and the other symbols are standard and defined
in the list of symbols.

The second equation, Eq. (10), is the momentum bal-
ance in the form of the Dupuit–Forcheimer modification
to the Darcy’s equation for the gradient of pressure [6].
This equation neglects inertial effects in the fluid, and hence
does not contain any time derivative. As discussed by Dres-
ner in [14] and Shajii and Freidberg in [15], this approxima-
tion is applicable in the case of a CICC where friction is the
dominating force opposing the pressure gradient. The first
term in Eq. (10) is the low-speed linear drag relation estab-
lished by Darcy, and the second term, often referred to as
Forcheimer term, was established in the form presented
above by Ward [16].

The energy balance, Eq. (11), applies to the case of
incompressible fluid and neglecting the work performed
by viscous forces. We retain this approximation for sim-
plicity, although it is not essential to the discussion in this
paper. The heat source _q000F includes all terms, and in partic-
ular heat transfer from the solid phase through the solid–
fluid heat transfer coefficient. The heat conductivity k that
appears in the diffusion flux is in general a tensor quantity
that contains two contributions, namely the classical con-
ductivity of the fluid kF due to diffusion at the molecular
scale, and an additional enhancement term due to flow
mixing at the length scale of the pores. This second mech-
anism is the thermal dispersion peculiar to forced convec-
tion in porous media, and arises as the direct
consequence of the tortuous flow path.

The non-dimensional numbers, used for the pressure
drop and heat transfer correlations of forced flow in porous
media, are the Prandtl, Reynolds, Nusselt, and Peclet num-
bers of the seepage flow, referred to the equivalent particle
diameter:

Pr ¼ lcpF

kF

ð12Þ

Reu ¼
qFvuDparticle

l
ð13Þ

Nuu ¼
hDparticle

kF

ð14Þ

Peu ¼
vuDparticle

aF

ð15Þ

In Eq. (15) aF is the thermal diffusivity of the fluid, or:

aF ¼
kF

qFcpF

ð16Þ

All CICC correlations, on the other hand, have been estab-
lished using the average flow velocity in the cable, v, and
the hydraulic diameter of the flow, Dh. They are hence
dependent on a Reynolds number given by:
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Re ¼ qFvDh

l
¼ 2

3

1

1� u
Reu ð17Þ

while the heat transfer correlations produce Nusselt
numbers:

Nu ¼ hDh

kF

¼ 2

3

u
1� u

Nuu ð18Þ
3. Pressure drop in a CICC vs. porous media

The hydraulic resistance that governs the pressure drop
necessary to achieve a desired helium flow is one of the
design issues in the thermal design of a CICC, and was
identified already in early optimisation studies, such as that
in [17]. As a basis of comparison, we define the friction fac-
tor f given by:

op
ox
¼ �2

f
Dh

qFjvjv ð19Þ
where Dh is the hydraulic diameter of the flow. In this
form, pressure drop data have been modelled by Katheder
using the following correlation [9]:

fKatheder ¼
1

4u0:72
0:051þ 19:5

Re0:88

� �
ð20Þ

The above expression is used extensively in the design and
analysis of coils built with CICCs, but has been shown to
have limited predictive capability and a large uncertainty,
up to a factor 2 [11].

If we consider the CICC as a porous medium, we take
Eq. (10) for a single component of the flow (e.g. the x direc-
tion), and we make use of the definitions given earlier, it is
possible to identify terms in the momentum balance Eqs.
(10) and (19), leading to the following friction factor:

f ¼ u2CF

Dh

2K1=2
þ u

D2
h

2K
1

Re
ð21Þ

which is a direct consequence of the Darcy–Forcheimer
equation, and, so far, does not contain any free parameters.
Comparing the expression above (Eq. (21)) to the fit of
Katheder (Eq. (20)), we see that the dependence on the
Reynolds number is very similar. On the other hand, the
porosity appears explicitly in Eqs. (20) and (21) with a very
different dependence, which is an interesting result and re-
quires some explanation. In fact, as discussed later, also K

and CF depend on porosity, so that the whole scaling of f

with u is not trivial.
In Eq. (21) all parameters are known or can be com-

puted from the cable geometry and operating conditions,
apart for the permeability K and the drag coefficient CF.
These last are known to depend not only on the porosity,
but also on the details of the geometry of the solid phase
of the porous medium, i.e., the arrangement of the strands
in the cable. Indeed, their determination for each geometric
configuration and porosity is a long-standing problem,
which is the main issue in the porous media analogy.

The reference value often quoted for the permeability is
the following, obtained in the case of a packed bed of
spherical particles of diameter Dparticle, attributed to Car-
man–Kozeny:

K ¼
D2

particleu
3

180ð1� uÞ2
ð22Þ

In practice, it is known that the value of K can vary by or-
ders of magnitude depending on the details of the pores
and solid phase. Measurements and numerical simulations
of porous flow in beds of fibers have shown that the value
obtained from Eq. (22) may be too small [18–20]. Kaviany
reports a small modification of the above expression [18]:

K ¼
D2

particleu
3

150ð1� uÞ2
ð23Þ

where the only difference is in the numerical factor at the
denominator.

For the drag coefficient CF, the values often quoted in
the literature for beds of round particles are in the range
of 0.5 for a porosity of 0.4. Kaviany reports the following
dependency on the porosity [18]:

CF ¼
1:75ffiffiffiffiffiffiffiffi

150
p

u3=2
ð24Þ

Substituting the values of Eqs. (23) and (24) for permeabil-
ity and drag coefficient in Eq. (21), we obtain the Ergun
equation [21] in the following form that is directly compa-
rable to the CICC fit of Katheder:

f ¼ 7

12
þ 100

3

1

Re
ð25Þ

Eq. (25) has been verified experimentally and adapted using
measured data. As an example, Achenbach [22] proposes
the following correlation for packed beds of spherical par-
ticles, expressed again using the friction factor definition of
Eq. (19):

f ¼ 2

3

� �0:1
1

Re0:1
þ 320

9

1

Re
ð26Þ

In addition to the above configurations, we have selected
for comparison the results obtained by Wu et al. on woven
metal screens of different porosity and weaving pattern
[23]. The correlations found are in a general form:

f ¼ a
Re
þ b

Rec ð27Þ

Suitable values of the fitting constants in the range
10 < Re < 1000 vary from:

a ¼ 55:6

b ¼ 0:55

c ¼ 0:071
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for plain square woven screens, to:

a ¼ 24:7

b ¼ 0:99

c ¼ 0:071

for twilled dutch woven screens.
The values obtained using the above correlations for

packed bed of particles and woven screens, Eqs. (25)–
(27), have been plotted in Fig. 2 for comparison to the
CICC correlation of Katheder, Eq. (20) evaluated at a
porosity of 0.35, which is typical of CICC’s. At all Rey-
nolds number the pressure drop predicted for the CICC
is lower than in a bed of equivalent particles. We believe
that this low value can be explained considering that while
packed beds of particles and woven screens produce a solid
phase with random structure, the strands are twisted
repeatedly to form the cable of the CICC and produce a
pattern of free channels with length much larger than the
strand dimension, hence favouring the flow and reducing
the pressure drop.

At low Reynolds (Re < 100) the values of the friction
factor are lower but comparable to that of a packed bed
of equivalent particles. This implies that for a CICC the
values of permeability, the dominating friction mechanism
at low Re, are comparable to those of a porous medium of
same equivalent particle diameter. On the other hand, at
high Reynolds (Re > 1000) the friction factor of a CICC
is an order of magnitude smaller than that of a packed
bed of particles and woven metal screens. We hence expect
the drag coefficient, determining the high Re behaviour, to
be much smaller in a CICC than in a porous medium of
same equivalent particle diameter. This can be appreciated
by computing the values of permeability K and drag coef-
Fig. 2. Comparison of friction factor, as defined in Eq. (19), for packed
beds (Ergun [21] and Achenbach [22]) woven metal screens (Wu et al. [23])
and typical CICC with a void fraction of 35% (Katheder [9]). The Darcy–
Forcheimer Eq. (21) has been fitted to the CICC correlation using values
of K = 3.5 � 10�9 (m2) and CF = 0.055.
ficient CF such that the friction factor obtained from the
Darcy–Forcheimer equation (Eq. (21)) matches the empir-
ical fit of Katheder (Eq. (20)). We obtain that the perme-
ability of a CICC cabled with 0.8 mm strands and
porosity 0.35 is of the order of 3.5 � 10�9 (m2), to be com-
pared to 1.2 � 10�9 (m2) estimated using Eq. (22), i.e., a
factor 3 higher. The drag coefficient of the same CICC is
0.055, to be compared to 0.65 obtained using Eq. (24),
i.e., an order of magnitude smaller.

In summary, the pressure drop of a CICC could be
described well using the porous media momentum balance
Eq. (10), or the friction factor Eq. (21), provided that the
permeability and drag coefficient are known. These, in
turn, appear to deviate from the theory of particle beds
and woven fibers. The applicable range of values for the
permeability and the drag coefficient of a CICC, and in
particular their dependence on porosity, is the topic of
the following section.
4. Permeability and drag coefficient estimates for CICCs

Permeability and drag coefficient are not known a priori

for the complex configuration of the multi-stage cable in
the CICC. Lacking an analytical basis, we have decided
to resort on friction factors measured in CICCs of various
size, built with strands of different diameter (from 0.6 to
1 mm), void fraction (from 25% to 47%), and cabling pat-
tern, to form a data base of fitted K and CF. A survey of
data from the early CICC developments is reported in
[7], while [11] gives some recent results on ITER CICCs.
In addition to these data, we have used the measurements
performed by Bagnasco et al. [24] on two small-size CICCs
compacted at various void fraction from 35% to 25%. Per-
meability and drag coefficient can be extracted from fric-
tion factor data as described in [7], fitting the data with a
model f = a + b/Re.

In Fig. 3 we have compiled the values of normalised per-
meability, defined as the ratio of K

D2
particle

, plotted as a func-
tion of porosity. In the same plot we have also reported
the value predicted by Eq. (23), and the best fit using a
model:

K

D2
particle

¼ u3

Að1� uÞ2
ð28Þ

The dependence of the permeability on porosity is rela-
tively clear and is consistent with the theoretical expecta-
tion. The minimum fit residual is obtained for A = 140
which is very close to the expected value A = 150 in Eq.
(23). The permeability is estimated by Eq. (28) with an
average relative error dK/K = 40%.

The case of the drag coefficient, in Fig. 4, is quite differ-
ent. We have reported there the compilation of values of
CF, plotted as a function of the CICC porosity, compared
to the values predicted by Eq. (24). As already mentioned,
the values derived from measured data are substantially
lower than the expected range, by one order of magnitude.



Fig. 3. Values of normalised permeability, plotted as a function of
porosity, derived from the survey of Long [7], the survey of Zanino and
Savoldi Richard [11], and the data deduced from measured pressure drop
by Bagnasco et al. [24]. The measured data is compared to the theory of
Kaviany [18] (Eq. (23)). The fit Eq. (28) is used for the prediction of CICC
permeability as a function of porosity.

Fig. 4. Values of drag coefficient as a function of porosity, taken from the
survey of Long [7], the survey of Zanino and Savoldi Richard [11], and the
data deduced from measured pressure drop by Bagnasco et al. [24]. The
prediction for packed bed of particles from Kaviany [18] (Eq. (24)) is
reported for comparison. The data is fitted with Eq. (29).
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An interesting feature is that the measured values seem to
group in clusters that have an approximate dependency
on the porosity of the type:

CF ¼
B

u3=2
ð29Þ

which is consistent with the theoretical expectation of Eq.
(24). The reasons for the clustering are so far unclear,
although we suspect it to be associated with channeling
and the presence of long parallel channels in the ordered
structure of the twisted cable. This idea is supported by
the observation that cables with identical structure, but dif-
ferent void fraction, have a drag coefficient dependence on
the void fraction that follows closely Eq. (29). Although we
recognise that this last effect is not properly parameterised,
for the present we propose to use Eq. (29) with a value of
B = 0.013 to give an order-of-magnitude estimate. This
scaling, also reported in Fig. 4, results in a minimum resid-
ual with respect to the experimental data, and an average
relative error dCF/CF = 60%.

Given the above uncertainties, a simple error propaga-
tion analysis shows that at low Reynolds the overall uncer-
tainty on the friction factor is df/f � dK/K, corresponding
to a relative error of 40% on the predicted friction factor.
At high Reynolds the uncertainty on the friction factor is
df/f � dK/2K + dCF/CF, leading to an 80% relative error
on the predicted friction factor. These values are margin-
ally better or comparable to those quoted for the empirical
fit of Eq. (21) [9], but the obvious advantage in this case is
that the prediction is based on an established theory.
5. Effective conductivity and thermal dispersion

The effective thermal conductivity appearing in Eq. (11)
results from two contributions: the molecular conductivity,
and heat transfer due to mixing at the scale of the pores
induced by vigourous convection. To clarify the second
process, which is also called thermal dispersion, we can pic-
ture fluid elements starting at a distance from each other,
and flowing in different channels. Because of the tortuosity
of the channels, the fluid elements do not remain at the
same distance apart along the flow path, and at some loca-
tions they can mix. The net effect is a two-ways macro-
scopic transport of mass that promotes mixing of fluid
over distances much larger than the molecular length. In
the presence of temperature gradients, this effect also
results in heat transfer that, depending on the flow condi-
tions, can be largely in excess of molecular diffusion.

An accurate description of thermal dispersion is a com-
plex mathematical and physical matter. We consider here
the case of isotropic medium and 1-D flow, and we limit
ourselves to simple approximations for the effective longi-
tudinal and transverse thermal conductivity that are
obtained for beds of uniform spheres of diameter Dp. A
suitable expression for the effective conductivity in the
direction of the flow, is [6]:

kL ¼
kF for Peu � 1

1
1�u

2BL

p PeukF for Peu � 1

(
ð30Þ

Above, kF is the fluid molecular conductivity, and
BL = 1.75 is a constant determined empirically.

In the direction transverse to the flow, the effective ther-
mal conductivity has been derived theoretically and exper-
imentally, leading to several expressions depending on the
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approach taken. The simplest expression was obtained cor-
relating experimental data:

kT ¼
kF for Peu � 1

kFCTPeu for Peu � 1

�
ð31Þ

where CT is a constant (empirically, CT = 0.09. . .0.1). The
above equation was obtained as a fit to data. Hsu and
Cheng [25] have provided a theoretical support for the
asymptotic limit at high Peclet number. They have used
volume averaging of the flow and temperature deviations
from mean values, and have obtained the following
expression:

kT � kFDT

1� u
u

Peu ð32Þ

where the value of the constant DT is also determined
experimentally. Eqs. (31) and (32) give comparable results
for a value DT = 0.04.

An alternative approach was followed by Bo-Ming and
Jian-Hua [26], who used a fractal model to describe the tor-
tuosity of the flow in a porous medium. Defining the ratio
of the straight distance Ls travelled by a particle (the dis-
tance of a coherent macroscoptic motion) to the size of
the pore kmin (the smallest scale of the movement), and
the fractal dimension of the tortuous path d (where
1 < d < 2) they found that:

d ¼ 1þ
ln 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� u
p� �

lnðLs=kminÞ
ð33Þ

and that the effective transverse conductivity at high Peclet
is given by:

kT � kFET

1

u
d

Ls

kmin

� �d�1

� 1

" #
Peu ð34Þ
Fig. 5. Ratio of effective transverse thermal conductivity to fluid thermal
conductivity, predicted by different theories listed in the text, and plotted
as a function of Peclet number. The enhancement due to thermal
dispersion is significant at seepage Peclet larger than 10.
where the constant ET is based on experimental data. Tak-
ing the recommended ratio of Ls/kmin = 1000, a value
ET = 0.03 yields consistent results to the work reported
above.

Fig. 5 shows the dependencies of the ratio between the
effective transverse thermal conductivity and the fluid ther-
mal conductivity, obtained using the above models, as a
function of the Peclet number. In the typical range of Peclet
numbers of the above conditions (100–500) the enhance-
ment factor is of the order of 10–50. This is a large factor,
that contributes significantly to making the temperature in
the cross section of a CICC uniform, which is an advantage
from the point of view of operation of the cable.

6. Heat transfer in a CICC

Heat transfer is the second topic of practical interest in
the design of a CICC. The main motivation is that the tem-
perature of the strands shall be maintained as uniform and
as close as possible to that of the coolant under any oper-
ating condition to maximise the superconductor margin
with respect to critical conditions. In a porous medium,
heat transfer depends on the total flow, on the thermody-
namic state of the fluid, and, most important, on the geom-
etry and size of the pores, affecting the flow pattern. The
topic of heat transfer in porous media is by itself a vast sub-
ject of research, with considerable experimental difficulties.
Here we take a simpler approach, distinguishing among the
internal heat transfer coefficient hint that governs heat
exchange between the solid phase to the fluid phase at
the pore level (i.e., strand to coolant), and an external heat
transfer coefficient hext that governs the heat exchange from
the boundary of the flow (walls, free boundaries) to the
flow bulk.

Before we start the discussion, we remark that so far
these two heat transfer mechanisms have been treated in
a similar manner, using classical correlations for forced
convection such as that of Dittus–Boelter [13]:

Nu ¼ hDh

kF

¼ 0:023Re0:8Pr1=3 ð35Þ

with various modifications to adapt it to the range of tem-
perature and transient conditions [27–30]. The only excep-
tions are the studies of Long and Renard on the heat
transfer at the interface between the coolant in the cable
and the free flow in the cooling space in an ITER type con-
ductor of the type discussed earlier.

6.1. Internal heat transfer coefficient

Several, specific correlations have been established for
different types of porous medium and specific values of
the void fraction. Some examples have been collected from
selected works of Whitaker [31], Wakao and Kaguei [32],
Zukauskas [33], the review of Achenbach [22], and Bird
et al. [13]. We show in Fig. 6 the comparison of the predic-
tions of the above correlations over a wide range of Rey-



Fig. 6. Internal heat transfer coefficient (strand-helium) computed from
the correlation of Dittus–Boelter (Eq. (35)), as compared to the prediction
of the correlation proposed, from Achenbach [22] (Eq. (37)). Also
reported for comparison the values obtained using the correlations of Bird
et al. [13], Whitaker [31], Wakao and Kaguei [32], and Zukauskas [33].
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nolds number, as compared to the result of the Dittus–
Boelter correlation Eq. (35). The correlations from the
above references need to be reworked considerably to
express them in terms of the hydraulic diameter and Rey-
nolds number of the flow as defined in Eqs. (4) and (17).

For sufficiently large Reynolds (Re > 100), the correla-
tions reported agree well with each other and predict a heat
transfer coefficient much higher than that of the Dittus–
Boelter correlation. At low Reynolds number, as discussed
by Achenbach [22], other heat transfer mechanisms can
become significant. This results in a large uncertainty on
the value of the forced convection heat transfer coefficient
in this range of Re, and the question whether the Nusselt
number has a lower limit is so far undecided. For this
regime Achenbach recommends using a lower limit for
the Nusselt number around a sphere [22]:

hintDparticle

kF

¼ 2 ð36Þ

We have combined the above limit to the correlation from
[13] as follows:

hintDh

kF

¼ 4

3

u
1� u

þ uð1:671Re1=3 þ 0:668Re0:619Þ
� 	

Pr1=3

ð37Þ

that has the advantage of simplicity and produces results in
the consistent with those from most references quoted
above.

As a final comment to the above discussion, and for the
sake of completeness, we observe that the values of the
internal heat transfer coefficient reported in the literature
show a great variability. Achenbach justifies the spread
with the difficulty of controlling the sample geometry and
the experimental conditions. At any rate, values up to an
order of magnitude higher are given for tightly packed or
sintered particle beds and foams, see as an example [34,35].

6.2. External heat transfer coefficient

The external heat transfer coefficient depends on the
flow in the porous media as well as on that of the external
boundary (pipe wall, channel boundary) where the heat
transfer takes place. We consider here the case of a pipe
of diameter Dpipe which is a case study of practical interest
for the CICC geometry considered.

Nield [6] proposes in this case to use standard correla-
tions for forced convection, modified as follows to take
into account the effect of thermal dispersion:

hporous

hfree
� kT

kF

ð38Þ

where hporous indicates the heat transfer coefficient in the
porous flow, and hfree is the heat transfer coefficient as
would be obtained in the same configuration, but consider-
ing free flow under the same conditions. Their ratio is pro-
portional of the ratio of the effective thermal conductivity
of the porous medium to the molecular fluid conductivity,
which, as discussed earlier, can be large at large Peclet
number. In practice, we can estimate the external heat
transfer as follows:

hextDpipe

kT

¼ 8þ 0:023Re0:8
pipePr1=3 ð39Þ

where we have indicated with Repipe the Reynolds number
of the flow referred to the pipe diameter, or:

Repipe ¼
qvDpipe

l
ð40Þ

In the expression above, Eq. (39), we have introduced a
lower limit to the pipe Nusselt number of 8, as would be
obtained for laminar flow under constant heat flux.

We expect the above approximation to hold as long as
the thermal boundary layer is large when compared to
the length scale of mass exchange between pores, i.e., such
that thermal dispersion is effective within the thermal
boundary layer. This will obviously be true at low Rey-
nolds number. At high Reynolds number, an alternative
to Eq. (39) is the following correlation for pipes filled with
packed beds of sphere proposed by Achenbach [22]:

hwall ¼
kF

Dp

1� Dparticle

Dpipe

� �
Re0:61

u Pr1=3 ð41Þ

that is valid for Re > 100.
We report in Fig. 7 the comparison of the heat transfer

coefficient obtained with a Dittus–Boelter correlation with
a lower limit of 8 on the Nusselt number and the two cor-
relations Eqs. (39) and (41), evaluated for a CICC with a
cable made with strands of 0.8 mm diameter at 35% void
fraction. We also report for comparison values obtained
with the correlations proposed by Yagi and Wakao [36]



Fig. 7. External heat transfer coefficient (conduit-helium) computed from
the correlation of Dittus–Boelter (Eq. (35)), as compared to the prediction
obtained using the method proposed by Nield [6] (Eq. (39)) for Re < 1000
and Achenbach [22] (Eq. (41)) for Re > 1000. Also reported for compar-
ison the values obtained from the correlations of Yagi and Wakao [36] and
Kunii and Suzuki [37].
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and Kunii and Suzuki [37] (as reported by Dixon and Cres-
swell [38]). As for the internal heat transfer, the porous
media correlations are much higher than the heat transfer
predicted in the case of free flow, by nearly a factor 10 in
the range of Re of practical interest, Re > 1000. The two
porous media correlations discussed above give similar
results in the range of 100 < Re < 1000, where we expect
the transition from a regime dominated by dispersion in
the thermal boundary layer to a regime dominated by local
turbulence. For practical use we propose to use Eq. (39) up
to Re = 1000, and Eq. (41) beyond.

7. Boundary effects

So far we have considered in the discussion a uniform
and unbounded medium. This is not appropriate in the
case of the superconducting cable considered. While the
medium is indeed unbounded in longitudinal direction,
and can be considered unbounded (periodic) along the
perimeter, it has discontinuities in radial direction. Taking
the example of the ITER conductor of Fig. 1 (bottom,
right), the discontinuities are the cooling channel at the
inner radius and the jacket at the outer radius. As discussed
in [6] and [25], this causes a local change of porosity which
results in channeling effects (increased local massflow at the
two boundaries) and a modification of the mixing proper-
ties discussed above.

The effective porosity at the wall can be as large as twice
the nominal value. The dimension affected is of the order of
a fifth of the characteristic size of the solid phase, i.e., the
strand radius. The flow in this region is much less con-
stricted (channeling), and the local seepage velocity is
increased with respect to the average value. In a CICC
the size of the strand is only 10–50 times smaller than the
cable size, and channeling can contribute to a large reduc-
tion of the pressure drop. This effect is surely one of the
reasons why the pressure drop in a CICC is much smaller
than expected for a bed of packed spheres of equivalent
diameter.

A modification of the local value of the porosity also
leads to a change in the local thermal dispersion and heat
transfer. In fact, following Hsu and Cheng [25], thermal
dispersion is modified over a length of the same scale as
the characteristic dimension of the solid phase.

The combined effect of channeling and modified heat
transfer at the boundary of the cable results in steep tem-
perature gradients and limited mixing in the cable cross
section, as observed experimentally by Bruzzone et al.
[39]. Being aware of these effects is important, to put in
the proper perspective the predictive value of the correla-
tions discussed above.

8. Analysis of thermal dispersion in a CICC sample

The analysis of experimental data collected during the
cryogenic tests of the Low-Cost Joint ITER conductor
sample [40] provides a good example of application of
the analogy to porous media discussed in this paper. The
experiment consists in the measurement of the temperature
distribution downstream of a local heater placed in a heav-
ily instrumented CICC. The CICC contains a cable made
of 864 strands, wound around a central spiral. The inner
diameter of the spiral is 9.4 mm, while the outer diameter
of the cable is 36 mm. The cable is inserted in a 316LN pipe
with an outer diameter of 39.5 mm. The heater, a strip
8 mm wide and 38 mm long, is glued to the SS pipe and
covers a small extent compared to the cable size. The tem-
perature is measured at three longitudinal locations along
the CICC, placed at 140 mm, 640 mm, and 1120 mm from
the heater. Each location is equipped with six thermome-
ters that record the azimuthal temperature distribution in
the cross section and a thermometer placed in he center
of the spiral, measuring the temperature of the helium flow-
ing in the central space. The measurement runs were per-
formed at an initial temperature of 4.5 K, pressure of
10 bar, and in a range of total massflow from 2 to 8 g/s.
A cross section of the CICC equipped with the thermome-
ters mounted in a ring around the jacket is shown in Fig. 8.
A summary of the main cable geometry data and operating
conditions is reported in Table 1. Further details on the
experiment can be found elsewhere [40].

We have analysed the steady-state temperature profiles
induced by the heater as a function of the massflow of cool-
ant in the CICC. The azimuthal temperature profile, i.e.
measured along the cable perimeter in each of the three
cross sections, was analysed in Fourier series to obtain a
modal decomposition of the temperature distribution in
the cable. A simple analytical model was developed for
the dependence of the lowest order mode of the tempera-
ture distribution on the longitudinal position. The model



Fig. 8. Cross section of the LCJ dual channel cable-in-conduit conductor
with the sensor ring applied on its jacket [40].

Table 1
Cable geometry and operating conditions for the heat transfer experiment
performed on the Low-Cost Joint ITER CICC sample, from Ref. [40]

Conductor outer diameter (mm) 39.50
Cable space diameter (mm) 35.95
Strand diameter (Dstrand) (mm) 0.73
Number of strands (–) 864
Cosine of the average cabling angle (cosh) (–) 0.96
Spiral inner diameter (mm) 9.40
Spiral outer diameter (mm) 11.40
Spiral perforation (%) 25
Wrap thickness (mm) 0.10
Total helium in bundle (AF) (mm2) 349.8
Helium in central channel (hole) (mm2) 69.4
Hydraulic diameter of bundle (Dh) (mm) 0.75
Hydraulic diameter of hole (mm) 11.40
Void fraction of bundle (u) (%) 38.3
Inlet temperature (K) 4.5
Inlet pressure (bar) 10
Massflow (g/s) 2. . .8

Fig. 9. Comparison of effective fluid transverse thermal conductivity as
obtained from the analysis of the steady-state temperature distribution in
the LCJ sample, and the theory of Nield (Eq. (31)) [6], Hsu and Cheng
(Eq. (32)) [25], and Bo-Ming and Jian-Hua (Eq. (34)) [26].
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is based on parallel cooling channels exchanging heat
through a fictive heat transfer coefficient that represents
the transverse thermal resistance of the fluid, estimated as:

htransverse ¼
kT

t
ð42Þ

where t is the characteristic length of the heat exchange be-
tween the parallel channels, of the order of 10 mm in our
specific case. The heat transfer coefficient htransverse is deter-
mined fitting the measured dependence of the temperature
profiles. Using Eq. (42) it is then possible to infer the value
of the effective transverse thermal conductivity. The results
of this analysis are reported in Fig. 9, where we have plot-
ted for comparison the estimates of kT obtained with Eqs.
(31), (32), and (34). In the comparison we have neglected
the contribution of thermal conduction in the solid phase,
which is justified by the presence of a significant thermal
resistance at the fluid–solid interface. The agreement be-
tween the measured and expected effective thermal conduc-
tivity is satisfactory, and shows that thermal dispersion can
have a major role in heat transport within the cross section
of a CICC.
9. Conclusions

For the prediction and interpretation of pressure drop
and heat transfer we propose to use an analogy between
the cable in a Cable-in-Conduit superconductor and a por-
ous medium of the same porosity and equivalent geometry.
The analogy can shed new light on the results accumulated
so far, provide a new view point for their interpretation, a
useful tool for prediction, and guidelines for experimental
work.

We have shown in particular that porous media correla-
tions can be used to fit existing CICC pressure drop data.
We have provided scaling models for the prediction of per-
meability and drag coefficient as a function of the void
fraction and the strand diameter. We believe that channel-
ing, associated with the multi-stage cabling pattern of the
cable, is significant. A better characterisation of this effect
is required to improve the prediction capability of the pres-
sure drop correlation.

Based on the porous medium analogy, the expected heat
transfer in the CICC geometry is much larger than the val-
ues used to date, that are based on adapted pipe correla-
tions. The expected thermal dispersion has been verified
in a dedicated experiment, and the result found is consis-
tent with the expected range of convective enhancement
of the fluid thermal conduction coefficient.

This approach appears promising, but before proceed-
ing any further with theory and analysis, it is mandatory
to validate the concept by means of dedicated experiments



L. Bottura, C. Marinucci / International Journal of Heat and Mass Transfer 51 (2008) 2494–2505 2505
on the details of the cable hydraulic and thermal proper-
ties. As the scalings and correlations discussed in this paper
are given in terms of physical parameters such as the void
fraction or the cable strand, it should be relatively easy to
design experiments that test parametrically the expected
functional dependencies and extend the existing database.
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